-// βπ PiscΔs β· value.test.js
-// ====================================================================
-//
-// Copyright Β© 2022β2023 Lady [@ Ladyβs Computer].
-//
-// This Source Code Form is subject to the terms of the Mozilla Public
-// License, v. 2.0. If a copy of the MPL was not distributed with this
-// file, You can obtain one at <https://mozilla.org/MPL/2.0/>.
+// SPDX-FileCopyrightText: 2022, 2023, 2025 Lady <https://www.ladys.computer/about/#lady>
+// SPDX-License-Identifier: MPL-2.0
+/**
+ * β βπ PiscΔs β· value.test.js
+ *
+ * Copyright Β© 2022β2023, 2025 Lady [@ Ladys Computer].
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at <https://mozilla.org/MPL/2.0/>.
+ */
import {
assertEquals,
isFullyPopulatedDescriptor,
isGenericDescriptor,
ITERATOR,
- LN10,
- LN2,
- LOG10β,
- LOG2β,
+ LN_10,
+ LN_2,
+ LOG10_π,
+ LOG2_π,
MATCH,
MATCH_ALL,
MAXIMUM_NUMBER,
ordinaryToPrimitive,
POSITIVE_INFINITY,
POSITIVE_ZERO,
- RECIPROCAL_SQRT2,
+ RECIPROCAL_SQRT_2,
REPLACE,
sameValue,
sameValueZero,
SPECIES,
SPLIT,
- SQRT2,
+ SQRT_2,
TO_PRIMITIVE,
TO_STRING_TAG,
toFunctionName,
type,
UNDEFINED,
UNSCOPABLES,
- Ξ,
- Ξ ,
- β,
+ π,
+ π,
+ π,
} from "./value.js";
describe("ASYNC_ITERATOR", () => {
});
});
-describe("LN10", () => {
+describe("LN_10", () => {
it("[[Get]] is ln(10)", () => {
- assertStrictEquals(LN10, Math.LN10);
+ assertStrictEquals(LN_10, Math.LN10);
});
});
-describe("LN2", () => {
+describe("LN_2", () => {
it("[[Get]] is ln(2)", () => {
- assertStrictEquals(LN2, Math.LN2);
+ assertStrictEquals(LN_2, Math.LN2);
});
});
-describe("LOG10β", () => {
- it("[[Get]] is log10(β)", () => {
- assertStrictEquals(LOG10β, Math.LOG10E);
+describe("LOG10_π", () => {
+ it("[[Get]] is log10(π)", () => {
+ assertStrictEquals(LOG10_π, Math.LOG10E);
});
});
-describe("LOG2β", () => {
+describe("LOG2_π", () => {
it("[[Get]] is log2(β)", () => {
- assertStrictEquals(LOG2β, Math.LOG2E);
+ assertStrictEquals(LOG2_π, Math.LOG2E);
});
});
});
});
-describe("RECIPROCAL_SQRT2", () => {
+describe("RECIPROCAL_SQRT_2", () => {
it("[[Get]] is sqrt(Β½)", () => {
- assertStrictEquals(RECIPROCAL_SQRT2, Math.SQRT1_2);
+ assertStrictEquals(RECIPROCAL_SQRT_2, Math.SQRT1_2);
});
});
});
});
-describe("SQRT2", () => {
+describe("SQRT_2", () => {
it("[[Get]] is sqrt(2)", () => {
- assertStrictEquals(SQRT2, Math.SQRT2);
+ assertStrictEquals(SQRT_2, Math.SQRT2);
});
});
});
});
-describe("Ξ", () => {
- it("[[Get]] is Ξ΅", () => {
- assertStrictEquals(Ξ, Number.EPSILON);
+describe("π", () => {
+ it("[[Get]] is π", () => {
+ assertStrictEquals(π, Math.E);
});
});
-describe("Ξ ", () => {
- it("[[Get]] is Ο", () => {
- assertStrictEquals(Ξ , Math.PI);
+describe("π", () => {
+ it("[[Get]] is π", () => {
+ assertStrictEquals(π, Number.EPSILON);
});
});
-describe("β", () => {
- it("[[Get]] is β", () => {
- assertStrictEquals(β, Math.E);
+describe("π", () => {
+ it("[[Get]] is π", () => {
+ assertStrictEquals(π, Math.PI);
});
});