clz32,
max,
min,
+ NEGATIVE_ZERO,
+ POSITIVE_ZERO,
sgn,
toBigInt,
+ toExponentialNotation,
+ toFixedDecimalNotation,
toFloat32,
- toIntegerOrInfinity,
+ toIntegralNumber,
+ toIntegralNumberOrInfinity,
toIntN,
toNumber,
toNumeric,
toUintN,
} from "./numeric.js";
+describe("NEGATIVE_ZERO", () => {
+ it("[[Get]] is negative zero", () => {
+ assertStrictEquals(NEGATIVE_ZERO, -0);
+ });
+});
+
+describe("POSITIVE_ZERO", () => {
+ it("[[Get]] is positive zero", () => {
+ assertStrictEquals(POSITIVE_ZERO, 0);
+ });
+});
+
describe("abs", () => {
it("[[Call]] returns the absolute value", () => {
assertStrictEquals(abs(-1), 1);
});
});
+describe("toExponentialNotation", () => {
+ it("[[Call]] converts to exponential notation", () => {
+ assertStrictEquals(toExponentialNotation(231), "2.31e+2");
+ });
+
+ it("[[Call]] works with big·ints", () => {
+ assertStrictEquals(
+ toExponentialNotation(9007199254740993n),
+ "9.007199254740993e+15",
+ );
+ });
+
+ it("[[Call]] respects the specified number of fractional digits", () => {
+ assertStrictEquals(
+ toExponentialNotation(.00000000642, 3),
+ "6.420e-9",
+ );
+ assertStrictEquals(toExponentialNotation(.00691, 1), "6.9e-3");
+ assertStrictEquals(toExponentialNotation(.00685, 1), "6.9e-3");
+ assertStrictEquals(toExponentialNotation(.004199, 2), "4.20e-3");
+ assertStrictEquals(
+ toExponentialNotation(6420000000n, 3),
+ "6.420e+9",
+ );
+ assertStrictEquals(toExponentialNotation(6910n, 1), "6.9e+3");
+ assertStrictEquals(toExponentialNotation(6850n, 1), "6.9e+3");
+ assertStrictEquals(toExponentialNotation(4199n, 2), "4.20e+3");
+ });
+});
+
+describe("toFixedDecimalNotation", () => {
+ it("[[Call]] converts to fixed decimal notation", () => {
+ assertStrictEquals(toFixedDecimalNotation(69.4199, 3), "69.420");
+ });
+
+ it("[[Call]] works with big·ints", () => {
+ assertStrictEquals(
+ toFixedDecimalNotation(9007199254740993n),
+ "9007199254740993",
+ );
+ assertStrictEquals(
+ toFixedDecimalNotation(9007199254740993n, 2),
+ "9007199254740993.00",
+ );
+ });
+});
+
describe("toFloat32", () => {
it("[[Call]] returns the 32‐bit floating‐point representation", () => {
assertStrictEquals(
it("[[Call]] works with numbers", () => {
assertStrictEquals(toIntN(2, 7), -1);
});
+
+ it("[[Call]] works with non‐integers", () => {
+ assertStrictEquals(toIntN(2, 7.21), -1);
+ assertStrictEquals(toIntN(2, Infinity), 0);
+ });
+});
+
+describe("toIntegralNumber", () => {
+ it("[[Call]] converts nan to zero", () => {
+ assertStrictEquals(toIntegralNumber(NaN), 0);
+ });
+
+ it("[[Call]] converts negative zero to positive zero", () => {
+ assertStrictEquals(toIntegralNumber(-0), 0);
+ });
+
+ it("[[Call]] drops the fractional part of negative numbers", () => {
+ assertStrictEquals(toIntegralNumber(-1.79), -1);
+ });
+
+ it("[[Call]] returns zero for infinity", () => {
+ assertStrictEquals(toIntegralNumber(Infinity), 0);
+ });
+
+ it("[[Call]] returns zero for negative infinity", () => {
+ assertStrictEquals(toIntegralNumber(-Infinity), 0);
+ });
+
+ it("[[Call]] works with big·ints", () => {
+ assertStrictEquals(toIntegralNumber(2n), 2);
+ });
});
-describe("toIntegerOrInfinity", () => {
+describe("toIntegralNumberOrInfinity", () => {
it("[[Call]] converts nan to zero", () => {
- assertStrictEquals(toIntegerOrInfinity(NaN), 0);
+ assertStrictEquals(toIntegralNumberOrInfinity(NaN), 0);
});
it("[[Call]] converts negative zero to positive zero", () => {
- assertStrictEquals(toIntegerOrInfinity(-0), 0);
+ assertStrictEquals(toIntegralNumberOrInfinity(-0), 0);
});
it("[[Call]] drops the fractional part of negative numbers", () => {
- assertStrictEquals(toIntegerOrInfinity(-1.79), -1);
+ assertStrictEquals(toIntegralNumberOrInfinity(-1.79), -1);
});
it("[[Call]] returns infinity for infinity", () => {
- assertStrictEquals(toIntegerOrInfinity(Infinity), Infinity);
+ assertStrictEquals(toIntegralNumberOrInfinity(Infinity), Infinity);
});
it("[[Call]] returns negative infinity for negative infinity", () => {
- assertStrictEquals(toIntegerOrInfinity(Infinity), Infinity);
+ assertStrictEquals(
+ toIntegralNumberOrInfinity(-Infinity),
+ -Infinity,
+ );
+ });
+
+ it("[[Call]] works with big·ints", () => {
+ assertStrictEquals(toIntegralNumberOrInfinity(2n), 2);
});
});
it("[[Call]] works with numbers", () => {
assertStrictEquals(toUintN(2, 7), 3);
});
+
+ it("[[Call]] works with non‐integers", () => {
+ assertStrictEquals(toUintN(2, 7.21), 3);
+ assertStrictEquals(toUintN(2, Infinity), 0);
+ });
});