// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at <https://mozilla.org/MPL/2.0/>.
+import { call } from "./function.js";
+import {
+ stringCatenate,
+ stringPadEnd,
+ stringRepeat,
+ substring,
+ toString,
+} from "./string.js";
import { sameValue, toPrimitive } from "./value.js";
export const {
return { toBigInt: ($) => makeBigInt($) };
})();
+export const {
+ /**
+ * Returns the result of converting the provided value to an
+ * exponential notation string.
+ *
+ * If a second argument is provided, it gives the number of
+ * fractional digits to use in the mantissa. Otherwise, the smallest
+ * number which does not result in a reduction in precision is used.
+ *
+ * ※ This method is safe to use with big·ints.
+ */
+ toExponentialNotation,
+
+ /**
+ * Returns the result of converting the provided value to a fixed
+ * decimal notation string with the provided number of fractional
+ * digits.
+ *
+ * ※ This method is safe to use with big·ints.
+ */
+ toFixedDecimalNotation,
+} = (() => {
+ const {
+ toExponential: numberToExponential,
+ toFixed: numberToFixed,
+ } = Number.prototype;
+ const { toString: bigintToString } = BigInt.prototype;
+ return {
+ toExponentialNotation: ($, fractionDigits) => {
+ const n = toNumeric($);
+ const f = toIntegralNumberOrInfinity(fractionDigits);
+ if (!isFiniteNumber(f) || f < 0 || f > 100) {
+ throw new RangeError(
+ `Piscēs: The number of fractional digits must be a finite number between 0 and 100 inclusive; got: ${f}.`,
+ );
+ } else {
+ if (typeof n === "number") {
+ return call(
+ numberToExponential,
+ n,
+ [fractionDigits === undefined ? fractionDigits : f],
+ );
+ } else {
+ const digits = call(bigintToString, n, [10]);
+ const { length } = digits;
+ if (fractionDigits === undefined) {
+ return length === 1
+ ? `${digits[0]}e+0`
+ : `${digits[0]}.${substring(digits, 1)}e+${length - 1}`;
+ } else if (f === 0) {
+ return `${digits[0]}e+0`;
+ } else {
+ const fractionalPart = toString(
+ round(
+ +stringCatenate(
+ stringPadEnd(substring(digits, 1, f + 1), f, "0"),
+ ".",
+ digits[f + 1] || "0",
+ ),
+ ),
+ );
+ return `${digits[0]}.${fractionalPart}e+${length - 1}`;
+ }
+ }
+ }
+ },
+ toFixedDecimalNotation: ($, fractionDigits) => {
+ const f = toIntegralNumberOrInfinity(fractionDigits);
+ if (!isFiniteNumber(f) || f < 0 || f > 100) {
+ throw new RangeError(
+ `Piscēs: The number of fractional digits must be a finite number between 0 and 100 inclusive; got: ${f}.`,
+ );
+ } else {
+ const n = toNumeric($);
+ if (typeof n === "number") {
+ return call(numberToFixed, n, [f]);
+ } else {
+ const digits = call(bigintToString, n, [10]);
+ return f === 0
+ ? digits
+ : `${digits}.${stringRepeat("0", f)}`;
+ }
+ }
+ },
+ };
+})();
+
export const {
/**
* Returns the result of converting the provided value to fit within
/**
* Returns the result of converting the provided value to a number.
*
- * ※ This method is safe to use with big·ints.
+ * ※ This function is safe to use with big·ints.
*
* ※ This is effectively a nonconstructible version of the Number
* constructor.
POSITIVE_ZERO,
sgn,
toBigInt,
+ toExponentialNotation,
+ toFixedDecimalNotation,
toFloat32,
toIntegralNumber,
toIntegralNumberOrInfinity,
});
});
+describe("toExponentialNotation", () => {
+ it("[[Call]] converts to exponential notation", () => {
+ assertStrictEquals(toExponentialNotation(231), "2.31e+2");
+ });
+
+ it("[[Call]] works with big·ints", () => {
+ assertStrictEquals(
+ toExponentialNotation(9007199254740993n),
+ "9.007199254740993e+15",
+ );
+ });
+
+ it("[[Call]] respects the specified number of fractional digits", () => {
+ assertStrictEquals(
+ toExponentialNotation(.00000000642, 3),
+ "6.420e-9",
+ );
+ assertStrictEquals(toExponentialNotation(.00691, 1), "6.9e-3");
+ assertStrictEquals(toExponentialNotation(.00685, 1), "6.9e-3");
+ assertStrictEquals(toExponentialNotation(.004199, 2), "4.20e-3");
+ assertStrictEquals(
+ toExponentialNotation(6420000000n, 3),
+ "6.420e+9",
+ );
+ assertStrictEquals(toExponentialNotation(6910n, 1), "6.9e+3");
+ assertStrictEquals(toExponentialNotation(6850n, 1), "6.9e+3");
+ assertStrictEquals(toExponentialNotation(4199n, 2), "4.20e+3");
+ });
+});
+
+describe("toFixedDecimalNotation", () => {
+ it("[[Call]] converts to fixed decimal notation", () => {
+ assertStrictEquals(toFixedDecimalNotation(69.4199, 3), "69.420");
+ });
+
+ it("[[Call]] works with big·ints", () => {
+ assertStrictEquals(
+ toFixedDecimalNotation(9007199254740993n),
+ "9007199254740993",
+ );
+ assertStrictEquals(
+ toFixedDecimalNotation(9007199254740993n, 2),
+ "9007199254740993.00",
+ );
+ });
+});
+
describe("toFloat32", () => {
it("[[Call]] returns the 32‐bit floating‐point representation", () => {
assertStrictEquals(